
www.manaraa.com

Journal of Information Systems Education, Vol. 18(4)

425

Involving Software Engineering Students in Open Source
Software Projects: Experiences from a Pilot Study

Sulayman K. Sowe
Ioannis G. Stamelos

Department of Informatics
Aristotle University

54124 Thessaloniki, Greece
sksowe@csd.auth.gr , stamelos@csd.auth.gr

ABSTRACT

Anecdotal and research evidences show that the Free and Open Source Software (F/OSS) development model has produced a
paradigm shift in the way we develop, support, and distribute software. This shift is not only redefining the software industry
but also the way we teach and learn in our software engineering (SE) courses. But for many universities F/OSS is seen as an
optional low cost technology to support the IT infrastructure and administrational duties. Few see F/OSS as an opportunity for
students to learn the SE concepts and skills we teach. Furthermore, it is still an open question as to whether the F/OSS
methodology can be effectively used to teach SE courses within the formally structured curriculum in most universities. This
paper discusses F/OSS projects as bazaars of learning that offer a meaningful learning context. The discussion is centered on
a pilot study in which students were involved in software testing in F/OSS projects. We present the teaching and learning
framework we used in the pilot study and report on our experiences, lessons learned, and some practical problems we
encountered. Our grading and evaluation approach show that the students did relatively well as bug hunters and reporters.
Results from two online surveys indicate that students are motivated in participating in software testing in the bazaar, and they
are willing to participate in project activities long after their graduation. The study reveals one possible way SE educators can
teach and integrate F/OSS into their formal curricular structure.

Keywords: Software Engineering Education, Open Source Software Projects, Capstone Projects, Software Testing, Learning

Objectives, Teaching and learning.

1. INTRODUCTION

Software engineering (SE) educators often emphasize that
SE courses should have a significant ‘real-world’ experience
necessary to enable effective learning of software
engineering skills and concepts. However, students still
graduate from universities without getting the chance to
participate in realistic and long-term SE projects (Liu, 2005).
One reason for this might be due to the fact that, in SE
projects, the real-world involves participants with different
skills and experiences and is full of inconsistencies,
complex, and changing all the time (Hans, 2005). Thus,
getting students involved in such a complex environment
while at school is not only challenging for students and
instructors, but also difficult to implement in the formal
teaching and learning structure of most SE courses.

The joint IEEE/ACM CS curriculum guidelines
(IEEE/ACM, SE2004) suggest that CS curricular should:
• have a significant real-world basis necessary to enable

effective learning of software engineering skills and
concepts,

• incorporate Capstone projects. Students need a
significant project, preferably spanning their entire last

year, in order to practice the knowledge and skills they
have learned.

Many efforts, in terms of teaching and research, have

been made with regards to these guidelines. For example,
Alzamil (2005) demonstrated that involving students in
software projects in local companies is one way of
effectively teaching SE courses. But he concluded that most
of these companies are not willing to sacrifice their product
quality to students.

Free and Open Source Software (F/OSS) development
not only exemplifies a viable software development
approach, but also a model for the creation of self-learning
(Sowe, et. al., 2004) and self-organizing communities.
Enable by the Internet, geographically distributed individuals
voluntarily contribute to a project by means of the Bazaar
model (Raymond, 1999). Extensive peer collaboration
allows project participants to write code, debug, test, and
integrate software. Communities in various projects provide
support services such as suggestions for products features,
act as distributing organs, answer queries, and help new
members having problems with the software. Research
evidences suggest that the communities in various F/OSS

www.manaraa.com

Journal of Information Systems Education, Vol. 18(4)

426

projects provide free help or ‘user-to-user assistance’
(Lakhani and Hippel, 2003) and problem solving for
participants. Such communities are also focus on learning
and the sharing of knowledge (Holtgrewe, 2004, Sowe, et.
al., 2006c).

In recent times, F/OSS is making inroads not only in
business and software industries but in colleges and
universities as well. There is increased interest in the F/OSS
learning environment (Sowe, et. al., 2004) and in F/OSS
projects as bazaars of learning (Sowe, et al., 2006a). F/OSS
is both an alternative teaching methodology and an
educational model (Faber, 2002). Computer science students
can be involved in meaningful software development
activities and get experience in dealing with realistic
software systems with large quantities of code written by
other people (Carrington and Kim, 2003). Many universities
have also started teaching F/OSS course (German, 2005;
Megias, et al., 2005; Ozel, et. al., 2006). Projects (e.g.
Edukalibre) have been launched to study the transfer of
F/OSS practices to the production of educational resources
(Barahona, et. al., 2005). Another European Union funded
project, FLOSSCom studies how the principles of F/OSS
communities can be used to improve ICT supported formal
education. Workshops (e.g. tOSSad) have also started
discussing the adoption of F/OSS in education (Ozel, et. al.,
2006).

These studies show that, pedagogically, software
engineering educators may utilize F/OSS to extend the
methodology by which we learn, apply, and teach SE
courses. However, the F/OSS projects environment is
different from the formal SE teaching and learning context in
many colleges and universities. Important as these studies
are, they fail to address the challenges software engineering
educators face. For example, how to teach SE courses using
F/OSS methodology in the formally structured SE
curriculum.

Furthermore, with Capstone projects, students must be
able to meet some learning objectives of a typical SE
curriculum:

OBJ1: Show mastery of the software engineering
knowledge and skills, and professional issues
necessary to begin practice as a software engineer.

OBJ2: Work as an individual and as part of a team to
develop and deliver quality software artifacts.

OBJ3: Demonstrate an understanding and appreciation
for the importance of negotiation, effective work
habits, leadership, and good communication with
stakeholders in a typical software development
environment.

OBJ4: Learn new models, techniques, and
technologies as they emerge and appreciate the
necessity of such continuing professional
development. (IEEE/ACM, SE2004, pp.15-16)
Even with Capstone projects many SE engineering

courses still face problems meeting some of these learning
objectives. F/OSS projects as bazaars of learning may not be
the cure for this ill but may go a long way in meeting some
of these objectives.

In this paper we present an F/OSS teaching and learning
framework which addresses the challenge SE educators face
and how best some of these learning objectives can be met.

The framework for teaching SE courses in general and
software testing in particular was implemented as a pilot
study at the Department of Informatics, Aristotle University.
The aim of the study is to:
• provide opportunity for our students to work on what

they considered interesting themselves,
• give the students real-world experience in dealing with

large software projects.

In the pilot study, students volunteered, just as every
F/OSS developer does, and had to choose their projects. We
only wanted to provide them with useful guidance and
support. Furthermore, we hope that our experiences in this
study will lead us to further experimentation with a larger
group of students.

The rest of the paper is organized as follows. Section 2
introduces the F/OSS framework and discusses what each
phase entails. Section 3 presents the grading and evaluation
approach we used. This section uses results of students’
participation in their projects and their responses to the two
online surveys. Section 4 lists experiences and lessons
learned in the implementation of the framework. A
discussion on how well the pilot study seemed to meet the
learning objectives of Capstone projects and some validity
threats to our study are presented in Section 5. Our
concluding remarks and future research are presented in
Section 6.

2. F/OSS FRAMEWORK FOR TEACHING
SOFTWARE ENGINEERING COURSES

The piloted F/OSS framework was implemented within the
teaching and learning context of the Introduction to Software
Engineering course (ISE) and lasted approximately 12.5
weeks. ISE is one of the 72 undergraduate courses offered by
the department of informatics. The course is compulsory for
computer science majors and is offered as a 12-13 weeks
course during the 5th semester. The objectives of the course
are twofold; to provide students with a "pragmatic picture of
software engineering research and practice” (Pfleeger, 1998),
and expose them to the principles software engineering as a
laboratory and practical science. In the ISE course students
have 2hrs/week lectures and 2hrs/week of laboratory work.
As part of their assignments students work in small groups,
writing and execute test plans for their group projects.
Topics covered in the course range from software
development models and process, project planning and
management, system design, software maintenance, etc, to
testing individual programs and complete systems. The topic
of interest to us in this paper is software testing. Some of the
courses students would have completed prior to the ISE
course are:
• Semester 1: C language (Basic Constructs)
• Semester 2: Advance C language, UNIX
• Semester 3: C++, Logic and Functional Programming
• Semester 4: PROLOG, Compilers

During semesters 1 to 4 students would have acquired
certain software development skills (liu, 2005) which may be
vital to the software testing aspect of the ISE course and the
implementation of our framework. These skills are:

www.manaraa.com

Journal of Information Systems Education, Vol. 18(4)

427

• Writing small programs (usually in C language) as their
programming assignments

• Developing software in teams and collaborating in
small-scale software projects.
In the ISE course we try to make students understand

the difference between testing the small programs they write
for themselves in class and as assignments and the testing of
large scale software products that they might deal with when
they graduate. The teaching and learning context focuses on
the identification of software faults and failures, unit and
integration testing, function and performance testing, writing
and execution of test plans/cases, etc.

Two lecturers were involved in the pilot study. One was
responsible for scheduling F/OSS activities, the other acting
as an adviser. Students at their previous semesters have
already been taught programming, so coding is not a focal
point of the ISE course. Instead, focus is placed on other
activities such as software testing.

The framework shown in Figure 1 is in three phases.
Each phase describes a context in which students get
involved in F/OSS projects activities. Their involvement was
basic. Students select a project and download and use the
software. Any problems they encounter in the use of the
software are reported to the project's community for action.
Their main tasks were to find and report bugs in their
respective projects. These tasks may take the form of
functional, usability, or smoke testing. In what follows, we
discuss each phase in turn.

Figure 1. F/OSS Framework for Teaching Software
Engineering Courses, (Sowe et al. 2006a; pp.262).

2.1 Phase 1
Phase 1 was a preparatory stage in which the lecturer
scheduled classroom activities and guided the students in
their project selection. We discussed with the 150 students in
the ISE course about involving them in software testing in
F/OSS projects. Fifteen students volunteered to take part in
the pilot program, but only thirteen students completed the
exercise. The F/OSS development process is different from
traditional software development that students are taught in
their CS courses. Thus, it’s vital at this phase that students
are introduced to F/OSS. Our introductory lectures were on
the following topics:
• What is F/OSS? This section covered the F/OSS

development process, activities in projects, the rights
various licenses (e.g. GNU/GPL) grants the user of
F/OSS, etc.

• F/OSS communities: Formation, structures and
members’ roles. We discussed communities in the
Linux, Apache, and Debian projects.

• Communication: We discussed etiquettes of forums,
mailing lists (moderated and un-moderated), and
Internet Relay Chats (IRCs).

• Collaborative platforms: We introduced the students
to CVS, Tinderbox, Bugzilla, bug tracking systems
(BTS) and how to browse bug databases.
At the end of the introductory lectures the students were

guided to explore sourceforge.net, a repository of F/OSS
projects. This session was intended to give the students a feel
as to the category of F/OSS projects available on the
Internet. At the end of the exploratory process the students
selected their projects. In choosing a project, the students
followed these F/OSS projects selection criteria.
• Operating system/platform (Linux, Windows, etc).

Students may choose projects which run on platform
they are most comfortable with.

• Size of ownership/developers. According to the Bazaar
model (Raymond, 1999), we expect a project with more
“eyeballs” to have higher software development
activity. Therefore, we encouraged the students to select
projects with three or more developers.

• Development status (Alpha, Beta, Mature, etc). We
encouraged the students to use the alpha and beta
releases. These versions of the software are released to
the F/OSS community for debugging and
implementations of functionalities. Much project
activity is centered on these versions. The mature and
stable releases are not likely to generate much
discussion in which students can contribute because
many of the critical bugs may have been removed.

• Programming language (C, C++, etc). If students are
to take part in coding activities, they should choose
programming languages they are most comfortable
with. Coding was desirable but not necessary task for
this pilot study.

• Extensive collaboration in lists/forums. Most project
activities take place in forums and lists. So it’s
important that students choose projects with active
forums. This is mostly the case with projects that are
hosted at sourceforge.net but also having their own web
sites.
Each student was asked to prepare a report on his/her

selected project for class presentation. In their presentations
each student gave a brief history of his project and listed the
project's characteristics based on the F/OSS projects
selection criteria.

2.2 Phase 2
During this period the students learned how to register in
their projects, use bug tracking systems, and browse and
report bugs. Each student sent his/her project name and login
details to the lecturer. These details were used to track
students’ activities in their projects. Every time a student
submitted a bug, he/she notified the lecturer. Students were
asked to continuously login to check the status of their
submission. They could work in their projects anytime and
anywhere they felt like. The students implemented the
testing strategy shown in Figure 2. They applied testing
techniques such as smoke tests, functional tests, usability
tests, etc.

www.manaraa.com

Journal of Information Systems Education, Vol. 18(4)

428

Figure 2. F/OSS Testing Strategy.

As shown in Figure 2, the students downloaded the

software to be tested and applied various software testing
techniques. This may result in the discovery of bugs (design
faults, improvements to be incorporated into the next release,
etc) which are then logged into the project's bug database
using standard bug reporting procedure and tools (e.g. Bug
Tracking Systems). Where a student was not able to find a
bug, he/she ran more tests on the software or selected
another project to continue testing.

In the fifth week the students were asked to make
another class presentation. In presenting their experiences,
the students discussed the types of bugs they found, how the
bugs were found, what they thought caused the bugs, how
they reported the bugs, what responses, if any, were received
from other participants, and any other problems they
encountered.

2.3 Phase 3
At the end of the pilot study the students were sent a slide
presentation template and asked to make a final fifteen
minute presentation. The layout of the presentation was as
follows:
• Particulars (Course title, name, email, and student id).
• Project details (name, login id, website, brief history,

and screen shots).
• List of Testing Activities (number of bugs found (bfn),

bugs reported (brp), bugs fixed (bfx), and number of
replies (rep) received). Students should give the URL of
the variables brp, bfx, and rep.

• Like, dislike, and their future plans (if any) in the
project selected.

3. GRADING AND EVALUATION APPROACH

At the end of the pilot study we evaluated the students based
on the presentations they made in class, their participation in
their respective projects, and their testing activities.
Furthermore, we conducted two online surveys in order to
capture the students’ opinions and experiences in testing in
F/OSS projects.

The presentations of the students are available at
http://sweng.csd.auth.gr/~sksowe/Students%20Presentation/.
The 16 projects the students tested in are shown in Table 1.
The online surveys and their respective URLs are in Apendix
1 and 2.

The students were graded and the marks awarded as
their coursework (50% of their grade) and written exams (for
the other 50%). The grading was done as follows:
• Class presentation (10%). 3 points for each of the

presentations made in Phases 1 and 2. And 4 points for
the final presentation in Phase 3.

• Project participation (12%). Measured by the number
of emails we exchanged with the student about his
project

• Working with testing tools (13%). How a student used
and understood the bug tracking system or bug database
in his project.

• Testing activity (TA) 15%. Measured by four
variables; (bfn), (brp), (bfx), and (rep).

www.manaraa.com

Journal of Information Systems Education, Vol. 18(4)

429

Project Name Category URL
1 Mozilla (Seamonkey) Internet Browser http://www.mozilla.org/projects/seamonkey/
2 Mozilla (Firefox) Internet Browser http://wiki.mozilla.org/Firefox:1.5.0.2:Test_Plan
3 Imagein Image Processing http://sourceforge.net/projects/imagein
4 Vdrift Games http://vdrift.net/
5 Cube Games http://sourceforge.net/projects/cube
6 Eclipse Open Platform http://www.eclipse.org/
7 FloAts Mobile Agent Mobiles & Networks http://fma.sourceforge.net/index2.htm
8 Torcs Games http://torcs.sourceforge.net/
9 Audacity Entertainment http://audacity.sourceforge.net/
10 Mednafen Games http://mednafen.com/
11 Stellarium Astronomy https://sourceforge.net/projects/stellarium
12 Dr.DivX Playback http://sourceforge.net/projects/drdivx/
13 Mill3d Games http://sourceforge.net/projects/mill3d
14 Stunts3D Games http://sourceforge.net/projects/stunts3d
15 Mega Mario Games http://sourceforge.net/projects/mmario
16 Gloster Games http://gloster.sourceforge.net

Table 5. Projects Students Tested In

We will now discuss the results of the students testing
activities and their responses to the questions in our surveys.

3.1 Students Testing Activities
Results of students testing activities are described in terms of
the four variables (bfn, brp, bfx, and rep). Table 2 shows a
simple summary of students testing activities.

 bfn brp bfx rep
N Valid 13 13 13 13
 Missing 0 0 0 0

Mean 5.538 5.231 1.150 3.310
Median 4.000 4.000 1.000 3.000

Std. Deviation 3.017 2.743 1.281 2.175
Range 8.0 9.0 3 7

Minimum 3.0 2.0 0 1
Maximum 11.0 11.0 3 8

Sum 72.0 68.0 15 43
Table 2. Descriptive Statistics of Students Testing

Activities

In total, the 13 students tested in 16 F/OSS projects,

found 72 bugs, reported 68, fixed 15, and received 43 replies
from the F/OSS communities in their projects. The mean
values of bugs found and reported per student were 5.54 and
5.23, respectively. These figures show that the students
reported slightly less bugs than they found, because some of
the bugs they found were already reported. Even though the
students performed well in finding and reporting bugs in
their projects, they did not do well in fixing bugs
(mean=1.15). This is because they were not required to do
any coding in this part of their course.

As shown in Figure 3, students #2, #3, #4, #5, #7, #011
and #13 have low to moderate performance in all of their
activities. Students #1, #6, #8, #9, #10, and #12 have
performance only in three variables (bfn, brp, rep), with
student #6 performing much better than the rest.

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13

Students

N
um

be
r

bfn brp bfx rep

Figure 3. Stacked Bar charts showing how the students

perform in each variable.

3.2 Students Opinions and Experiences: Surveys
We invited the students via email to complete two
anonymous online surveys. The surveys were designed and
published on the department’s website using PHPSurveyor.
The surveys items were meant to measure
• the pedagogical value of the study,
• students' opinions and experiences about software

testing in F/OSS projects, and
• how much the students have benefited by contributing

and learning from testing in F/OSS projects.
Survey one was conducted in week 6 and consisted of

21 items. We called it an intervention survey because it
allowed us to intervene early and focus attention on
difficulties students were having (e.g. ease of finding a
project, process of reporting bugs). Survey two was
conducted in week 13 and consisted of 19 items. The
response rate for both surveys was 84.62% (11 out of 13
students). Seven items (Table 3) from survey one were
repeated in survey two so that we could compare students'
responses to the common questions and see how their
motivation and perception has changed overtime.

Comparing the responses of the students to the common
questions, we were able to make the following conclusions:
ST1Q1 vs ST2Q3: All 11 students responded "Yes" in both
surveys. This means that throughout the pilot study students
enjoyed software testing in their projects.

www.manaraa.com

Journal of Information Systems Education, Vol. 18(4)

430

 Variables
Items/Questions Survey 1 Survey 2

Do you enjoy software testing
in F/OSS projects?

Q1 Q3

Did you find it easy to get a
project to participate in?

Q2 Q18

Was it easy to find bugs in the
software in your project?

Q3 Q5

Was the process of reporting
bugs easy?

Q4 Q6

Would you prefer to do other
courses in Open Source

Software?

Q9 Q8

Did you read and understand the
bugs others reported?

Q10 Q11

Are you considering
participating in you project after

you graduate?

Q20 Q14

Table 3. Questions common to both surveys

As shown in figure 4, in both surveys the students
expressed that it was not easy to find a project to participate
in. This was surprising because we were expecting the
students to find projects very easily within the myriad of
F/OSS projects at sourceforge.net.

In both surveys the answers are the same (Figure 5).
Most of the students found it difficult to find bugs in their
software. This was the case at the beginning. But as they
became familiar with the software, the rate of finding bugs
increased gradually.

Even though finding bugs was difficult, Figure 6 shows
that most of the students reported the bugs they found with
relative ease. However, this was also easy at the beginning
but became gradually difficult as they could not find new
bugs.

Students’ response to this item in both surveys, Figure
7, shows that most of them would prefer to have their other
courses taught using F/OSS methodology, especially towards
the end of the study. In survey two all the students answered
in the affirmative.

Figure 4. ST1Q2 vs ST2Q18

Figure 5. ST1Q3 vs ST2Q5:

Figure 6. ST1Q4 vs ST2Q6:

Figure 7. ST1Q9 vs ST2Q8

Figure 8. ST1Q10 vs ST2Q11

www.manaraa.com

Journal of Information Systems Education, Vol. 18(4)

431

Figure 9. ST1Q20 vs ST2Q14:

As shown in Figure 8, the students expressed that they

read and understood bugs others reported in their projects.
Two students did not answer this question in survey one but
in survey two those students expressed that they did not
understand some of the bugs reported in their project.

The discrepancy in the two surveys, as shown in
Figure9, show that two students did not answer this question

in survey one. However, towards the end of the study in
survey two, all the students were considering participating in
their projects after they graduate.

For the rest of the items (Figure 10), we grouped the
responses of the students into four categories.

3.2.1 The teaching and learning context: The students
acknowledged the assistance we gave them in selecting their
projects (N=9). This took the form of prompt replies to their
email queries, emailing them handouts, and informing them
of any developments we noticed in their projects. We only
intervened in their testing activities when it was absolutely
necessary. For example, a student might decide to discuss a
bug before reporting it (N=5). Thus, more than half (N=7) of
the students reported getting assistance from the lecturer in
their testing activity.

Furthermore, the students seems to be satisfied with the
mode of communication (N=11) - via email. However, 8 out
of 11 students reported that they would have preferred more
face-to-face communication with the lecturer. In survey 2, all
the students (N=11) reported that they worked with another
student in their project, because they preferred this mode of
working (N=11).

Figure 10. Survey Responses

www.manaraa.com

Journal of Information Systems Education, Vol. 18(4)

432

3.2.2 Students’ involvement in F/OSS projects: In both
surveys the students expressed that it was not easy to find a
project to participate in. Even a higher number (N=9) in
survey 2 reported that it was not easy to get a project which
interested them. Two students felt otherwise. However, ten
students managed to find projects in which they have
experienced similar software. This helps to explain why most
of the students chose projects in the games category (see
Table 1). The students reported that it took them, on average,
1-2 days before they could find any bugs in the software in
their projects. Most of them logged-in to check the status of
their bug reports at least once a week. Others did so at
various times. Eight out of eleven students reported that they
had enough time to work on their projects. Below is a
summary of some of the comments students made when
asked to list three problems they encountered when selecting
a project:
• There is a variety of projects to choose from.
• Some programs also required me to install other

programs before I could run them.
• Many projects were 'dead' or inactive.
• Not so many active and beta testing projects available

that would fill my needs.
• Most of the projects I tried did not address the every

day needs for me as a student.

3.2.3 Students testing experiences: Most of the students
(N=9) preferred using the bug tracking systems (BTS) in
their projects to report bugs. However, only nine students
reported that BTS are easy to use. In survey one, eight
students reported that it is easy to describe the bugs they
found. However, only three students were able to fix the
bugs they found and only four were able to fix bugs others
reported in their projects. Below is a summary of some of the
comments students made when asked to list three problems
they encountered when submitting bug reports:
• Some of the projects am interested in did not support

bug tracking system.
• Others had found the same bugs before me.
• Some bug reporting document guidelines are too long

and has many versions.
• I couldn't describe exactly some bugs.

3.2.4 F/OSS community response: Towards the end of the
program, ten out of eleven students reported that their
projects' communities are very friendly and responsive. Eight
students reported that they received responses to their bug
reports and that they are satisfied with the responses they
received. Furthermore, seven students (including all the three
students who tested in Mozilla) reported that their projects
provided useful information to help them in their testing
activities.

4. EXPERIENCES AND LESSONS LEARNED

Below is a list of our experiences, lessons learned and some
practical problems we encountered in the implementation of
the F/OSS framework. After our encounter with the students
in Phase 1, our only source of contact with them was through
email exchanges (135 emails in 87 days). We had only three

meetings with all the students. These were during the class
presentations, which also acted as brainstorming sessions.

4.1 The Positives
We believed that this program has provided many benefits to
the students:
1) Practical experience with the way software testing

(especially smoke and usability testing) is done and
how large and complex F/OSS projects work.

2) Experience in working in virtual distributed software
development environment.

3) Experience in writing good bug reports and
communicating their ideas clearly to ‘colleagues’ they
have not met face-to-face.

4) Opportunity to work with essential software testing and
bug reporting tools they might use when they graduate.

5) Students were easily integrated in their project teams. It
is questionable whether this would be the case with
non-experienced students working with professionals
where many problems might arise (intimidation of
students, high abandon rate, etc.).

4.1.1 Schedules: The students have different courses and
varying schedules. The flexibility of the F/OSS framework in
terms of when and where to test gave them enough time to
devote to other courses and interests.

4.1.2 Learning opportunities: We learned from the students
as well. For example, as a result of two students testing in a
project using the Mantis Bug Tracker, both the lecturer and
the adviser were exposed and had to learn this tool. The
students benefited by having opportunity to have practical
experience with software they read about in their textbooks.

4.2 The Negatives
4.2.1 Specialization: The students worked on only one aspect
of the ISE course (software testing). While we are
comfortable that they experienced testing in F/OSS projects,
we are concerned that this may have prevented them from
experiencing other aspects of software development
(documentation, design, coding).
4.2.2 Collaboration: The students were encouraged but not
required to work in groups/pairs. We had only one instance
of collaboration among the students (two worked in one
project). But in the surveys the students expressed that they
indeed collaborated and discussed with their classmates.

4.2.3 Evaluation problem: We had some “overachievers”
who knew Linux and UNIX well. They also did well in
finding and reporting bugs and helped other students. We
had no way of rewarding these extra-curricular activities.

4.2.4 Sample size: Out of the 150 students in the ISE course,
only 15 volunteered at the beginning. A larger number of
volunteers would have enabled us to make more sound
generalizations about our results. Retrospectively, the small
number allowed us to effectively interact with the students
and made it possible for each student to present his/her work.
As Carrington and Kim (2003) found out this might be
impossible to achieve with a larger group.

www.manaraa.com

Journal of Information Systems Education, Vol. 18(4)

433

4.3 Possible improvements
4.3.1 Synchronous communication: We might set up a
Web-based discussion forum where we could ‘meet’ and
discuss with the students at least twice a week. But we feared
that this would impose some restrictions on the students
because they would then be required to be online at a
scheduled date and time. Using Instant Messaging (IM) to
communicate with the students was another available option.
Either would have been appropriate and much easier than
composing and sending emails. However, communication
with the students would have been difficult to archive, search
and monitor.

4.3.2 Encroach on students’ freedom: We did not intervene
when the students were selecting their projects, resulting in
most of them selecting projects in the games category from
the sourceforge.net portal. We believe that this provide
problems for diversification. We speculate that if we had
pre-selected and presented a diversity of projects to the
students, we would have had a better variety of projects. But
this would also contradict the F/OSS norm of freedom to
choose what you want to work on. As Raymond (1999)
noted and affirmed by Hippel and Krogh (2003), one of the
norms clearly expressed in the F/OSS community is that
work cannot be mandated and enforced.

Furthermore, responses to both surveys indicate that
two students did not complete the surveys. We could have
gained 100% response rate if we had made both surveys non-
anonymous and therefore mandatory.

4.3.3 Group work/Community formation: At the
beginning we considered organizing the students into groups
(3-4 students). Then each group would test in one project
(e.g. Mozilla Firefox or Mozilla Thunderbird). In each group
we could then have a task-leader (akin to a project leader)
selected based on his degree of involvement and contribution
to the group’s task.

4.3.4 Grading: In assessing the students we wanted to use
the number of views a bug report received from the project’s
community as a fifth variable (in addition to bfn, brp, bfx,
rep). However, only in three of the projects the students
selected was this available. Moreover, we suspected that
these numbers may have been inflated because the students
may have viewed their own submission many times. There
was a total of 729 views to students contributions in 3
projects (mean= 56.1, Std. Deviation= 115.754). We posit
that the number of views a contribution receives in an F/OSS
project is a good indication of how interesting or
uninteresting that contribution is. Paradoxically, it is very
difficult or impossible to see who viewed what.

4.3.5 Surveys: Applying Likert type questions for some
items, especially those related to students’ attitudes or their
opinions, could produce much more interesting information
or results.

4.4 Difficulties
4.4.1 Lecturer as Project Manager: We realized in this
pilot study that the lecturer’s role is more than preparing and
delivering 2hrs lectures. There was no fix lecture hours for
this aspect of the ISE course (students work on their projects

anytime they feel like). The lecturer needed to assume the
role of a manager in all the sixteen projects so that he knew
what is going on (tracking bug reports and responses). The
role enabled the lecturer to advise the students better when
they sent their email queries. Taking on all of the
responsibilities on top of the usual teaching schedule was a
gratifying burden. Recruiting another person (e.g. a PhD
student specializing in F/OSS) to take charge of students
activities when implementing such a framework seems a
good idea.

4.4.2 When to stop scoring points: Students motivation was
very high in this program. In one class presentation session
one of the students commented “…we (the pilot group) are
the modern students. We do the modern stuff, Linux”
(apparently he equates Linux with F/OSS). So it was difficult
to tell the students “Now stop finding and reporting bugs”.
Until the very day we graded the students, some were
reporting bugs and we had to adjust their marks accordingly.
We still continue getting emails about their activities and we
reply with encouraging comments.

4.4.3 Post projects activities: In a corridor discussion with
one of the students who failed in the final exams, he
commented that “I don’t care if I fail! I have been using the
software before the start of the program anyway. Now I
know the project and people writing the software, am still in
it and will continue…”

5. DISCUSSION AND VALIDITY THREATS

In this pilot study, the results of the students’ testing
activities show that some of them not only learnt knew skills
but have experienced, for the first time, how to do software
testing in F/OSS projects (OBJ1). They might not graduate
from this pilot study as professional software testers but the
study has given them a new start as some of them
acknowledged in the surveys (Section 3.2.3). Some students
tested solo in their projects but some collaborated and tested
in groups, thus giving them experience in working as part of
a software Quality Assurance team and making contributions
to the F/OSS community (OBJ2). Besides, they experienced
that working in a distributed software development
environment such as in F/OSS projects not only need
patience (see their comments in section 3.2.2 and 3.2.3), but
also one needs to negotiate and communicated his ideas well
in order to be appreciated by the community of the project in
which he/she participates (OBJ3). As seen in section 4.1,
perhaps the most positive aspect of this exercise for both the
students and lectures was the opportunity to learn to use new
software testing tools (OBJ4).

While such an pilot study helps to meet some of the SE
learning objectives advocated by the IEEE/ACM curriculum
guidelines, implementing a full SE course using the benefits
inherent in the F/OSS methodology is not with its challenges
as discussed in Section 4.2 and 4.4.

Validity threat: The validity of our pilot study could be
compromised by the size of our sample. Our data set consists
of a small random sample of student volunteers, about 10%
of the students in the ISE course. Thus, there is danger in
generalizing the results to other SE courses, classes, and

www.manaraa.com

Journal of Information Systems Education, Vol. 18(4)

434

possibly to other universities, where sample size, skills, and
backgrounds of the students are probably different. However,
because there are few published results in this area, we hope
that our findings will act as a base for further research.

Furthermore, based on discussions about this pilot study
in conferences (Sowe, et. al., 2006b), meetings
(Flosscom.net Kick-off meeting, November, 2006), and
workshops (SQO-OSS Workshop, 2006), we learnt that there
are some pending research, including:
• research to shed light on how we can blend the F/OSS

teaching and learning environment with that of the
formal SE teaching and learning context in colleges and
universities,

• a broad understanding of the F/OSS pedagogy,
• F/OSS evaluation and assessment methodologies,
• how F/OSS can improve the quality of teaching and

learning, and
• how to create a partnership between students and F/OSS

developers, projects and industry.

6. CONCLUSION AND FUTURE WORK

This paper has described a pilot study in which students were
involved in software testing in F/OSS projects. The F/OSS
framework discussed emphasized a teaching and learning
context in which the students were exposed to "real-world"
software engineering projects. The evaluation of the
framework was based on students’ participation in their
projects and the results of two online surveys we conducted.
In section 4 lists key pedagogical issues which may be
peculiar to F/OSS or this framework, but serve as important
guidelines for CS lecturers and SE educators. The
implementation of the framework in a formal SE course
shows that it is feasible to teach project-based SE courses
such as the Capstone projects advocated by the joint
IEEE/ACM curriculum guidelines, using F/OSS
methodology.

As our future work, we utilized our experience from
this pilot study. We have an ongoing pilot study of a similar
nature which will be concluded in September, 2007. We
have over 58 volunteers (experimental group) and 75 non-
volunteers (control group). We intend to compare the
performance of the two groups. The variables we would be
assessing are the following;
• Size in terms of number of developers and type of

FLOSS project(s) each student chose to work with.
• Time dedicated to bug finding and bug reporting.
• There opinions of F/OSS, using modified versions of

our online surveys.
• Learning style of the students
• Content analysis of emails we exchange with the

students and the emails the students exchange with
others in their projects. This would give valuable
information regarding the type of interaction that
involved the students and their project’s environment
(or F/OSS communities) as well as the interaction with
his/her instructor.

• The role of students as mentors. We have last year’s
students who volunteered to work with the new students
this semester.

• A survey of opinions of other CS staff about the F/OSS
teaching and learning framework we discussed here.

7. ACKNOWLEDGEMENT

We wish to acknowledge the participation of Prof. A.
Lefteris of the Department of Informatics, Aristotle
University. He proposed an alternative statistical evaluation
approach which we could not report in this paper. The
statistical analyses are available on request.

This work was partially funded through the European
Commission, DG Education and Culture, Socrates
programme, Minerva action line, project ref: 229405 - CP -1-
2006-1- PT - MINERVA – M (http://www.flosscom.net/).

8. REFERENCES

Alzamil, Z. (2005), “Towards an effective software

engineering course project.” Proceedings of the 27th
international Conference on Software Engineering, ICSE
'05. ACM Press, pp. 631-632.

Barahona, J. M., Tebb, C. and Dimitrova, V. (2005),
“Transferring Libre Software development Practices to the
Production of Educational Resources: the Edukalibre
Project.” First International Conference on Open Source
Systems, Genova, Italy.

Carrington, D. and Kim, S. (2003), “Teaching Software
Engineering Design with Open Source Software.” 33rd
ASEE/IEEE Frontiers in Education Conference, Nov. 5-8,
Boulder, CO.

Edulink Project (2007). Retrieved Thursday, 10 May 2007,
from http://edukalibre.org/

Faber, B. D. (2002), “Educational models and open source:
resisting the proprietary university.” Proceedings of the
20th Annual international Conference on Computer
Documentation, SIGDOC '02, ACM Press, pp. 31-38.

FLOSSCom Project (2006). Retrieved Oct. 20, 2006, from
http://www.flosscom.net/

 “Flosscom.net Kick-off meeting”, November,
2006http://flosscom.net/index.php?option=com_content&t
ask=view&id=23&Itemid=40

German, M. D. (2005), “Experience teaching a graduate
course in Open Source Software Engineering.”
Proceedings of the first International Conference on Open
Source Systems. Genova, pp.326-328.

Hans, V. (2005), “Some Myths of Software Engineering
Education.” Proceedings of the 27th international
Conference on Software Engineering, ICSE '05. ACM
Press, pp. 621-622.

Hippel, E., and Krogh, G. (2003), “Open Source Software
and the "Private-Collective" Innovation Model: Issues for
Organization Science.”Organization Science, Vol. 14,
2003, pp. 209-223.

IEEE/ACM Joint Task Force on Computing Curricula,
Software Engineering 2004 Curriculum Guidelines for
Undergraduate Degree Programs in Software Engineering.
Retrieved November 27, 2005, from
http://sites.computer.org/ccse/SE2004Volume.pdf

Liu, C. (2005), “Enriching software engineering courses with
service-learning projects and the open-source approach.”

www.manaraa.com

Journal of Information Systems Education, Vol. 18(4)

435

Proceedings of the 27th international Conference on Soft-
ware Engineering, ICSE '05. ACM Press, pp. 613-614.

Mantis Bug Tracker (2006), Retrieved April 27, 2006, from
http://www.mantisbt.org/

Megias, D., Serra, J., Macau, R. (2005), “An International
Master Programme in Free Software in the European
Higher Education Space.” Proceedings of the first
International Conference on Open Source Systems.
Genova, pp.349-352.

SQO-OSS Workshop, “Open Source Software Workshop”
(2006), Open Source Software: Research Communities
and Industries. Thessaloniki, 20 December, 2006, avail-
able at: http://www.sqo-oss.eu/events/public-workshop/

Ozel, B., Cilingir, B., Erkan, K. 2006 (Eds.) Towards Open
Source Software Adoption. OSS 2006 tOSSad Workshop
proceedings, Como, Italy, pp.79-88

PHP Surveyor (2006), Retrieved April 27, 2006, from
http://www.phpsurveyor.org/index.php

Raymond, S. E. (1999), The Cathedral and the Bazaar.
Musings on Linux and Open Source by an Accidental
Revolutionary. O'Reilly, Sebastopol, USA.

Sowe, S.K., Karoulis, A., Stamelos, I., Bleris. G.L. (2004),
“Free/Open Source Software Learning Community and
Web-Based Technologies”. IEEE Learning Technology
Newsletter, Vol. 6, No. 1, 2004, pp. 26-29.

Sowe, S .K., Stamelos, I., Deligiannis, I. (2006a), “
Framework for Teaching Software Testing using F/OSS
Methodology.” In Damiani, E., Fitzerald, B., Scacchi, W.,
Scott, M., Succi, G.,(Eds.), (2006). IFIP International
Federation for Information Processing, Open Source
Systems, Vol. 203, (Boston: Springer), pp. 261-266

Sowe, S.K., Stamelos, I., Angelis, L. (2006b), “An Empirical
Approach to Evaluate Students Participation in Free/Open
Source Software Projects”. IADIS International
Conference on Cognition and Exploratory Learning in
Digital Age CELDA 2006, 8-10 December, 2006,
Barcelona, Spain, pp.304-308

Sourceforge.net (2006), Retrieved April 27, 2006, from
http://sourceforge.net/

Pfleeger, L. S. 1998. Software Engineering. Theory and
Practice. Prentice Hall, pp. 278-392.

Lakhani K. R, and von Hippel E. (2003), “How open source
software works: "free" user-to-user assistance”. Research
policy, Vol. 32, No. 6, 2003, pp. 923-943.

Holtgrewe U. (2004), “Articulating the speed(s) of the
Internet: The case of Open Source/Free Software. Time &
Society, Vol. 13, No. 1, 2004, pp. 129-146.

Sowe, S.K., Angelis, L., Stamelos, I. (2006c), “Identifying
Knowledge Brokers that Yield Software Engineering
Knowledge in OSS Projects”, Information and Software
Technology, Vol. 48, No. 11, 2006, pp. 1025-1033.

AUTHOR BIOGRAPHIES

Sulayman K Sowe is a PhD student at the department of

Informatics, Aristotle University
of Thessaloniki, Greece. He
received a Bed. in science
education from University of
Bristol, UK (1991) and Advance
Diploma and MSc. in computer
science from Sichuan University,
China (1997). Mr. Sowe also holds
a Higher Teachers Certi-ficate
(HTC) form The Gambia College,
Brikama Campus. He was a part-

time lecturer in Information Technology at the University of
The Gambia (2002). He worked at the Department of State
for Education, The Gambia as the director of Information
Technology and Human Resource Developmen, as a System
Administrator and Assistant Registrar II for the West African
Examinations Council, and as a Database Manager for the
Medical Research Council. His research interests include
Free/Open Source Software Development, Knowledge
Sharing, Software Engineering Education, Information
Systems Evaluation, and Social and Collaborative Networks.
He is also working on several projects related to Free/Open
Source Software financed by Greece and the European
Commission Information Society Technologies (IST)
Programmes. He is the co-editor of the book "Emerging Free
and Open Source Software Practices", Idea Group Inc., 2007.

Ioannis G. Stamelos is Assistant Professor at the Aristotle

University of Thessaloniki, Dept. of
Informatics and Teaching Consultant
at the Hellenic Open University. He
received a degree in Electrical
Engineering from the Polytechnic
School of Thessaloniki (1983) and
the Ph. D. degree in computer
science from the Aristotle University
of Thessaloniki (1988). His research
interests include empirical software

evaluation and management, software education, agile
methods and open source software engineering. In particular
he has researched various aspects of open source projects,
knowledge sharing in open source communities and the
efficiency of ODL tools. He is author of approx. 70 scientific
papers and has co-edited 3 books.

www.manaraa.com

Journal of Information Systems Education, Vol. 18(4)

436

Appendix 1.

1. Students PowerPoint Presentations (http://sweng.csd.auth.gr/~sksowe/Students%20Presentation/)

2. Students Testing in F/OSS Projects: Survey I (http://swserv1.csd.auth.gr/survey/index.php?sid=15)

ST1Q1: Do you enjoy taking part in software testing in F/OSS projects? Yes No
ST1Q2: Did you find it easy to get a project to participate in? Yes No
ST1Q3: Was it easy to find bugs in the software in your project? Yes No
ST1Q4: Was the process of reporting bugs easy? Yes No
ST1Q5: Did you get any responses from the forums you reported your bugs? Yes No
ST1Q6: If your project is hosted at sourceforge.net was the bug tracker easy to use? Yes No
ST1Q7: Was it easy to describe the bugs you found? Yes No

 ST1Q8: Did you find any information on the website of your project which helped
you understand how to report bugs? Yes No

ST1Q9: Would you have preferred to do other courses using Open Source Software? Yes No
ST1Q10: Did you understand the bugs others reported in your project? Yes No
ST1Q11: Are you able to fix any of the bugs you found? Yes No
ST1Q12: Are you able to fix any of the bugs others reported? Yes No
ST1Q13: Did you get much assistance from the lecturer to help you selecting a project? Yes No
ST1Q14: Did you get much assistance from the lecturer to help you in your testing activity? Yes No

 ST1Q15: List 3 problems you encountered when selecting a project? Please write your answer here:------------------------------
 ST1Q16: List 3 problems you encountered when submitting your bug reports? Please write your answer here:-------------------
 ST1Q17: How long have you used the software before you found any bugs?

 Please choose *only one* of the following: 1-2 days 3-5 days 1 week
 ST1Q18: Do you prefer discussing your bug report with the lecturer before you submit it to the forum? Yes No
 ST1Q19: How often do you discuss you project with others? Please choose *all* that apply

 I never discuss my project activities I sometimes discuss my project with my classmates
I sometimes discuss my project with the lecturer

ST1Q20: Are you considering participating in the project you selected after graduate? Yes No
 ST1Q21: Where did you report bugs? * Please choose *all* that apply:

Using the Bug Tracking System Tech Support or Future Requests Tracking System Using Public Forums

3.. Students Testing in F/OSS Projects: Survey 2 (http://swserv1.csd.auth.gr/survey/index.php?sid=18)
ST2Q1: Did you work with another student in your project? Yes No
ST2Q2: Would you have preferred to work with another student in your project? Yes No
ST2Q3: Did you enjoy participating in software testing in Open Source Software Projects? Yes No
ST2Q4: Was it easy to get a project which interests you? Yes No
ST2Q5: Was it easy to find bugs in the software in your project? Yes No
ST2Q6: Was it easy to report your bugs? Yes No
ST2Q7: Are you satisfied with the answers you got about your bugs? Yes No
ST2Q8: Would you like to do other courses in Open Source Software? Yes No
ST2Q9: Did you have enough time to work in your project? Yes No

[Only answer this question if you answered 'No' to question 'ST2Q9 ']
ST2Q10: How much more time do you need to work on your project?

Please choose *only one* of the following: 1 more week More than 1 week More than 1 week
ST2Q11: Did you read bugs others reported in your projects? Yes No
ST2Q12: Are you satisfied with the communication you had with Dr. Sowe through emails? Yes No
ST2Q13: Would you have preferred more face-to-face meeting with [the lecturers] to discuss your project? Yes No
ST2Q14: Are you going to continue participating in your project? Yes No

 ST2Q15: How often do you login to check your bug reports? Please choose *all* that apply
Everyday Every 2 days Once a week Mostly during the weekends
Sometimes at Internet Cafes Mostly at home When am at the University At a friend's place

ST2Q16: Was the people in your project friendly? Yes No
ST2Q17: Did you have any communication problem during your testing? Yes No
ST2Q18: Did you find it easy to get a project to participate in? Yes No
ST2Q19: Did you have experience with software similar to the one in your project? Yes No

www.manaraa.com

